Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 15(1)2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38249047

RESUMEN

In urban community gardens, cultivated vegetation provides variable levels of habitat complexity, which can suppress pests by promoting predator diversity and improving pest control. In this study, we examine three components of the structural complexity of garden vegetation (cover, diversity, and connectivity) to investigate whether higher garden vegetation complexity leads to fewer herbivores, more predators, and higher predation. We worked in eight community gardens where we quantified vegetation complexity, sampled the arthropod community, and measured predation on corn earworm eggs. We found that plots with high vegetation cover supported higher species richness and greater abundance of predatory insects. High vegetation cover also supported a greater abundance and species richness of spiders. In contrast, high vegetation diversity was negatively associated with predator abundance. While high predator abundance was positively associated with egg predation, greater predator species richness had a negative impact on egg predation, suggesting that antagonism between predators may limit biological control. Community gardeners may thus manipulate vegetation cover and diversity to promote higher predator abundance and diversity in their plots. However, the species composition of predators and the prevalence of interspecific antagonism may ultimately determine subsequent impacts on biological pest control.

2.
Insects ; 14(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37999068

RESUMEN

Vegetation connectivity is an essential aspect of the habitat complexity that impacts species interactions at local scales. However, agricultural intensification reduces connectivity in agroforestry systems, including coffee agroecosystems, which may hinder the movement of natural enemies and reduce the ecosystem services that they provide. Ants play an important role in regulating the coffee berry borer (CBB), which is the most damaging coffee pest. For arboreal ant communities, the connections between trees are important structures that facilitate ant mobility, resource recruitment, foraging success, and pest control ability. To better understand how connectivity impacts arboreal ants in coffee agroecosystems, we conducted an experiment to assess the impact of artificial (string) and naturally occurring vegetation (vines, leaves, branches) connectivity on Azteca sericeasur behavior on coffee plants. We compared ant activity, resource recruitment, and CBB removal rates across three connectivity treatments connecting coffee plants to A. sericeasur nest trees: vegetation connectivity, string, and control (not connected) treatments. We found higher rates of ant activity, resource recruitment, and CBB removal on plants with naturally occurring vegetation connections to A. sericeasur nest trees. Artificial connectivity (string) increased the rates of resource recruitment and CBB removal but to a lesser extent than vegetation connectivity. Moreover, vegetation connectivity buffered reductions in ant activity with distance from the ant nest tree. These results reinforce how habitat complexity in the form of vegetation connectivity impacts interspecific interactions at the local scale. Our results also suggest that leaving some degree of vegetation connectivity between coffee plants and shade trees can promote ant-mediated biological pest control in coffee systems.

3.
Insects ; 14(7)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37504583

RESUMEN

(1) Urbanization threatens biodiversity, yet urban native plants support native biodiversity, contributing to conservation and ecosystem services. Within urban agroecosystems, where non-native plants are abundant, native plants may boost the abundance and richness of beneficial arthropods. Nevertheless, current information focuses on pollinators, with little attention being paid to other beneficials, like natural enemies. (2) We examined how the species richness of native plants, garden management, and landscape composition influence the abundance and species richness of all, native, and non-native bees, ladybeetles, ants, and ground-foraging spiders in urban agroecosystems (i.e., urban community gardens) in California. (3) We found that native plants (~10% of species, but only ~2.5% of plant cover) had little influence on arthropods, with negative effects only on non-native spider richness, likely due to the low plant cover provided by native plants. Garden size boosted native and non-native bee abundance and richness and non-native spider richness; floral abundance boosted non-native spider abundance and native and non-native spider richness; and mulch cover and tree and shrub abundance boosted non-native spider richness. Natural habitat cover promoted non-native bee and native ant abundance, but fewer native ladybeetle species were observed. (4) While native plant richness may not strongly influence the abundance and richness of beneficial arthropods, other garden management features could be manipulated to promote the conservation of native organisms or ecosystem services provided by native and non-native organisms within urban agroecosystems.

4.
Ecol Lett ; 26(3): 369-383, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36691722

RESUMEN

Ecosystem services (ESs) are essential for human well-being, especially in urban areas where 60% of the global population will live by 2030. While urban habitats have the potential to support biodiversity and ES, few studies have quantified the impact of local and landscape management across a diverse suite of services. We leverage 5 years of data (>5000 observations) across a network of urban community gardens to determine the drivers of biodiversity and ES trade-offs and synergies. We found multiple synergies and few trade-offs, contrasting previous assumptions that food production is at odds with biodiversity. Furthermore, we show that natural landscape cover interacts with local management to mediate services provided by mobile animals, specifically pest control and pollination. By quantifying the factors that support a diverse suite of ES, we highlight the critical role of garden management and urban planning for optimizing biodiversity and human benefit.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Humanos , Productos Agrícolas , Polinización , Conservación de los Recursos Naturales
5.
PLoS One ; 17(9): e0274122, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36137105

RESUMEN

Agroecosystem management influences ecological interactions that underpin ecosystem services. In human-centered systems, people's values and preferences influence management decisions. For example, aesthetic preferences for 'tidy' agroecosystems may remove vegetation complexity with potential negative impacts on beneficial associated biodiversity and ecosystem function. This may produce trade-offs in aesthetic- versus production-based management for ecosystem service provision. Yet, it is unclear how such preferences influence the ecology of small-scale urban agroecosystems, where aesthetic preferences for 'tidiness' are prominent among some gardener demographics. We used urban community gardens as a model system to experimentally test how aesthetic preferences for a 'tidy garden' versus a 'messy garden' influence insect pests, natural enemies, and pest control services. We manipulated gardens by mimicking a popular 'tidy' management practice-woodchip mulching-on the one hand, and simulating 'messy' gardens by adding 'weedy' plants to pathways on the other hand. Then, we measured for differences in natural enemy biodiversity (abundance, richness, community composition), and sentinel pest removal as a result of the tidy/messy manipulation. In addition, we measured vegetation and ground cover features of the garden system as measures of practices already in place. The tidy/messy manipulation did not significantly alter natural enemy or herbivore abundance within garden plots. The manipulation did, however, produce different compositions of natural enemy communities before and after the manipulation. Furthermore, the manipulation did affect short term gains and losses in predation services: the messy manipulation immediately lowered aphid pest removal compared to the tidy manipulation, while mulch already present in the system lowered Lepidoptera egg removal. Aesthetic preferences for 'tidy' green spaces often dominate urban landscapes. Yet, in urban food production systems, such aesthetic values and management preferences may create a fundamental tension in the provision of ecosystem services that support sustainable urban agriculture. Though human preferences may be hard to change, we suggest that gardeners allow some 'messiness' in their garden plots as a "lazy gardener" approach may promote particular natural enemy assemblages and may have no downsides to natural predation services.


Asunto(s)
Ecosistema , Conducta Predatoria , Agricultura , Animales , Jardines , Humanos , Control de Plagas , Control Biológico de Vectores
6.
Ecol Appl ; 32(8): e2708, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35810452

RESUMEN

Cities are sometimes characterized as homogenous with species assemblages composed of abundant, generalist species having similar ecological functions. Under this assumption, rare species, or species observed infrequently, would have especially high conservation value in cities for their potential to increase functional diversity. Management to increase the number of rare species in cities could be an important conservation strategy in a rapidly urbanizing world. However, most studies of species rarity define rarity in relatively pristine environments where human management and disturbance is minimized. We know little about what species are rare, how many species are rare, and what management practices promote rare species in urban environments. Here, we identified which plants and species of birds and bees that control pests and pollinate crops are rare in urban gardens and assessed how social, biophysical factors, and cross-taxonomic comparisons influence rare species richness. We found overwhelming numbers of rare species, with more than 50% of plants observed classified as rare. Our results highlight the importance of women, older individuals, and gardeners who live closer to garden sites in increasing the number of rare plants within urban areas. Fewer rare plants were found in older gardens and gardens with more bare soil. There were more rare bird species in larger gardens and more rare bee species for which canopy cover was higher. We also found that in some cases, rarity begets rarity, with positive correlations found between the number of rare plants and bee species and between bee and bird species. Overall, our results suggest that urban gardens include a high number of species existing at low frequency and that social and biophysical factors promoting rare, planned biodiversity can cascade down to promote rare, associated biodiversity.


Asunto(s)
Biodiversidad , Jardines , Femenino , Abejas , Animales , Humanos , Anciano , Ciudades , Jardinería , Plantas , Ecosistema , Urbanización
7.
FEMS Microbiol Ecol ; 98(7)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35641145

RESUMEN

Microorganisms within ectotherms must withstand the variable body temperatures of their hosts. Shifts in host body temperature resulting from climate change have the potential to shape ectotherm microbiome composition. Microbiome compositional changes occurring in response to temperature in nature have not been frequently examined, restricting our ability to predict microbe-mediated ectotherm responses to climate change. In a set of field-based observations, we characterized gut bacterial communities and thermal exposure across a population of desert arboreal ants (Cephalotes rohweri). In a paired growth chamber experiment, we exposed ant colonies to variable temperature regimes differing by 5°C for three months. We found that the abundance and composition of ant-associated bacteria were sensitive to elevated temperatures in both field and laboratory experiments. We observed a subset of taxa that responded similarly to temperature in the experimental and observational study, suggesting a role of seasonal temperature and local temperature differences amongst nests in shaping microbiomes within the ant population. Bacterial mutualists in the genus Cephaloticoccus (Opitutales: Opitutaceae) were especially sensitive to change in temperature-decreasing in abundance in naturally warm summer nests and warm growth chambers. We also report the discovery of a member of the Candidate Phlya Radiation (Phylum: Gracilibacteria), a suspected epibiont, found in low abundance within the guts of this ant species.


Asunto(s)
Hormigas , Microbioma Gastrointestinal , Animales , Hormigas/fisiología , Microbioma Gastrointestinal/fisiología , Estaciones del Año , Simbiosis , Verrucomicrobia
8.
Mol Ecol ; 31(7): 2157-2171, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35114032

RESUMEN

Urbanization is associated with increases in impervious land cover, which alters the distribution of resources available to wildlife and concentrates activity in unbuilt spaces such as parks and gardens. How resource shifts alter the dynamics of parasite and pathogen transmission has not been addressed for many important species in urban systems. We focus on urban gardens, resource-rich "islands" within the urban matrix, to examine how the availability of floral resources at local and landscape scales influences the prevalence of six RNA viruses and three parasites in honey bees and bumble bees. Because parasites and pathogens are transmitted at flowers between visitors, we expected that floral abundance would concentrate bees within gardens, amplifying infection rates in pollinators, unless increases in floral resources would enhance bee diversity enough to dilute transmission. We found that garden size and flowering perennial plant abundance had a positive, direct effect on parasite and pathogen richness in bumble bees, suggesting that resource provisioning amplifies transmission. We also found that parasitism rates in honey bees were positively associated with parasites and pathogens in bumble bees, suggesting spillover between species. Encouragingly, we found evidence that management may mitigate parasitism through indirect effects: garden size had a positive impact on bee diversity, which in turn was negatively associated with parasite and pathogen richness in bumble bees. Unexpectedly, we observed that that parasite and pathogen richness in honey bees had no significant predictors, highlighting the complexity of comparing transmission dynamics between species. Although floral resources provide bees with food, we suggest more research on the tradeoffs between resource provisioning and disease transmission to implement conservation plantings in changing landscapes.


Asunto(s)
Parásitos , Urbanización , Animales , Animales Salvajes , Abejas , Flores , Plantas , Polinización
9.
PeerJ ; 9: e12296, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760362

RESUMEN

Neotropical shade-grown coffee systems are renowned for their potential to conserve avian biodiversity. Yet, little is known about food resources consumed by insectivorous birds in these systems, the extent of resource competition between resident and migratory birds, or how management of shade trees might influence diet selection. We identified arthropods in stomach contents from obligate and generalist insectivorous birds captured in mist-nets at five coffee farms in Chiapas, Mexico between 2001-2003. Overall stomach contents from 938 individuals revealed dietary differences resulting from changes in seasons, years, and foraging guilds. Of four species sampled across all management systems, Yellow-green Vireo (Vireo flavoviridis) prey differed depending on coffee shade management, consuming more ants in shaded monoculture than polyculture systems. Diets of obligate and generalist resident insectivores were 72% dissimilar with obligate insectivores consuming more Coleoptera and Araneae, and generalist insectivores consuming more Formicidae and other Hymenoptera. This suggests that obligate insectivores target more specialized prey whereas generalist insectivores rely on less favorable, chemically-defended prey found in clumped distributions. Our dataset provides important natural history data for many Nearctic-Neotropical migrants such as Tennessee Warbler (Leiothlypis peregrina; N = 163), Nashville Warbler (Leiothlypis ruficapilla; N = 69), and Swainson's Thrush (Catharus ustulatus; N = 68) and tropical residents including Red-legged Honeycreepers (Cyanerpes cyaneus; N = 70) and Rufous-capped Warblers (Basileuterus rufifrons; N = 56). With declining arthropod populations worldwide, understanding the ecological interactions between obligate and generalist avian insectivores gives researchers the tools to evaluate community stability and inform conservation efforts.

10.
Ecol Appl ; 30(8): e02201, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32578260

RESUMEN

Ecological networks can provide insight into how biodiversity loss and changes in species interactions impact the delivery of ecosystem services. In agroecosystems that vary in management practices, quantifying changes in ecological network structure across gradients of local and landscape composition can inform both the ecology and function of productive agroecosystems. In this study, we examined natural-enemy-herbivore co-occurrence networks associated with Brassica oleracea (cole crops), a common crop in urban agricultural systems. Specifically, we investigated how local management characteristics of urban community gardens and the landscape composition around them affect (1) the abundance of B. oleracea herbivores and their natural enemies, (2) the natural-enemy : herbivore ratio, and (3) natural-enemy-herbivore co-occurrence network metrics. We sampled herbivores and natural enemies in B. oleracea plants in 24 vegetable gardens in the California, USA central coast region. We also collected information on garden characteristics and land-use cover of the surrounding landscape (2 km radius). We found that increased floral richness and B. oleracea abundance were associated with increased parasitoid abundance, non-aphid herbivore abundance, and increased network vulnerability; increased vegetation complexity suppressed parasitoid abundance, but still boosted network vulnerability. High agricultural land-use cover in the landscape surrounding urban gardens was associated with lower predator, parasitoid, and non-aphid herbivore abundance, lower natural-enemy : herbivore ratios, lower interaction richness, and higher trophic complementarity. While we did not directly measure pest control, higher interaction richness, higher vulnerability, and lower trophic complementarity are associated with higher pest control services in other agroecosystems. Thus, if gardens function similarly to other agroecosystems, our results indicate that increasing vegetation complexity, including trees, shrubs, and plant richness, especially within gardens located in intensively farmed landscapes, could potentially enhance the biodiversity and abundance of natural enemies, supporting ecological networks associated with higher pest control services.


Asunto(s)
Ecosistema , Herbivoria , Biodiversidad , Productos Agrícolas , Jardines
11.
Microb Ecol ; 80(4): 897-907, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32572535

RESUMEN

Wild bees encounter environmental microbes while foraging. While environmental context affects bee diversity, little is known about it how affects the wild bee microbiome. We used field surveys in 17 urban gardens to examine whether and how variation in local and landscape habitat features shapes the microbiome of the solitary Blue Orchard Bee, Osmia lignaria. We installed O. lignaria cocoons at each site, allowed bees to emerge and forage, then collected them. We measured local features of gardens using vegetation transects and landscape features with GIS. We found that in microbiome composition between bee individuals varied by environmental features such as natural habitat, floral resources, and bee species richness. We also found that environmental features were associated with the abundance of bacterial groups important for bee health, such as Lactobacillus. Our study highlights complex interactions between environment context, bee species diversity, and the bee-associated microbes.


Asunto(s)
Abejas/microbiología , Ecosistema , Jardinería/métodos , Jardines , Microbiota , Animales , Biodiversidad , California , Jardines/clasificación
12.
PeerJ ; 7: e8124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31799079

RESUMEN

Interspecific dominance hierarchies have been widely reported across animal systems. High-ranking species are expected to monopolize more resources than low-ranking species via resource monopolization. In some ant species, dominance hierarchies have been used to explain species coexistence and community structure. However, it remains unclear whether or in what contexts dominance hierarchies occur in tropical ant communities. This study seeks to examine whether arboreal twig-nesting ants competing for nesting resources in a Mexican coffee agricultural ecosystem are arranged in a linear dominance hierarchy. We described the dominance relationships among 10 species of ants and measured the uncertainty and steepness of the inferred dominance hierarchy. We also assessed the orderliness of the hierarchy by considering species interactions at the network level. Based on the randomized Elo-rating method, we found that the twig-nesting ant species Myrmelachista mexicana ranked highest in the ranking, while Pseudomyrmex ejectus was ranked as the lowest in the hierarchy. Our results show that the hierarchy was intermediate in its steepness, suggesting that the probability of higher ranked species winning contests against lower ranked species was fairly high. Motif analysis and significant excess of triads further revealed that the species networks were largely transitive. This study highlights that some tropical arboreal ant communities organize into dominance hierarchies.

13.
Insects ; 10(4)2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31010187

RESUMEN

Urban ecosystems, as mosaics of residential, industrial, commercial, and agricultural land, present challenges for species survival due to impervious surface, degradation, fragmentation, and modification of natural habitat, pollution, and introduced species. Some urban habitats, such as community gardens, support biodiversity and promote ecosystem services. In gardens, local factors (e.g., vegetation, groundcover) and landscape surroundings (e.g., agriculture, built or impervious cover) may influence species abundance, richness, and functional traits that are present. We examined which local and landscape factors within 19 community gardens in the California central coast influence ground beetle (Carabidae) activity density, species richness, functional group richness, and functional traits-body size, wing morphology, and dispersal ability. Gardens with higher crop richness and that are surrounded by agricultural land had greater carabid activity density, while species and functional group richness did not respond to any local or landscape factor. Gardens with more leaf litter had lower carabid activity, and gardens with more leaf litter tended to have more larger carabids. Changes in local (floral abundance, ground cover) and landscape (urban land cover) factors also influenced the distribution of individuals with certain wing morphology and body size traits. Thus, both local and landscape factors influence the taxonomic and functional traits of carabid communities, with potential implications for pest control services that are provided by carabids.

14.
Sci Rep ; 8(1): 17565, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510182

RESUMEN

Urban gardens are vital green spaces, providing food for residents and space for engaged citizenry and community development. In California, climate change conditions (heat and drought) are becoming more extreme, threatening the resilience of urban gardens. Water use restrictions limit the timing and amount of water that gardeners can access, exacerbating these climate challenges for urban food production. Together with volunteer gardeners, we examined how ambient temperature, water use, vegetation, ground cover, and soil management affect rates of soil moisture gain and loss in urban gardens for a six-week period in the summer of 2017, during the hottest part of the growing season. We found that plot-level management of soils is essential for creating urban garden plots that maintain stable levels of water within garden soils. Although plots with better soil quality (i.e. water holding capacity) experienced slower rates of soil moisture gain after a watering event, they also experienced slower rates of soil moisture loss after the event, leading to soils with more stable, less fluctuating moisture profiles over time. This may benefit gardeners because under extreme climates (such as heat and drought) and water use restrictions, maintaining more stable soils for their plants means that the soils will retain water over a longer period after each watering event. Overall, such results highlight that better soil management that improves soil quality measures such as water holding capacity are potential solutions for maintaining soil moisture and reducing water use under changing climate conditions.

15.
Glob Chang Biol ; 24(10): 4614-4625, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29851235

RESUMEN

The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.


Asunto(s)
Hormigas/fisiología , Biodiversidad , Animales , Clima , Ecosistema
16.
Environ Entomol ; 47(2): 309-317, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29506257

RESUMEN

Ant community assembly is driven by many factors including species interactions (e.g., competition, predation, parasitism), habitat filtering (e.g., vegetation differences, microclimate, food and nesting resources), and dispersal. Canopy ant communities, including dominant and twig-nesting ants, are structured by all these different factors, but we know less about the impacts of species interactions and habitat filters acting at the colonization or recruitment stage. We examined occupation of artificial twig nests placed in shade trees in coffee agroecosystems. We asked whether species interactions-aggression from the dominant canopy ant, Azteca sericeasur Longino (Hymenoptera: Formicidae)-or habitat filtering-species of tree where nests were placed or surrounding vegetation-influence colonization, species richness, and community composition of twig-nesting ants. We found 20 species of ants occupying artificial nests. Nest occupation was lower on trees with A. sericeasur, but did not differ depending on tree species or surrounding vegetation. Yet, there were species-specific differences in occupation depending on A. sericeasur presence and tree species. Ant species richness did not vary with A. sericeasur presence or tree species. Community composition varied with A. sericeasur presence and surrounding vegetation. Our results suggest that species interactions with dominant ants are important determinants of colonization and community composition of twig-nesting ants. Habitat filtering at the level of tree species did not have strong effects on twig-nesting ants, but changes in coffee management may contribute to differences in community composition with important implications for ant conservation in agricultural landscapes, as well as biological control of coffee pests.


Asunto(s)
Hormigas , Ecosistema , Árboles , Agricultura , Animales , Coffea , México
17.
Sci Total Environ ; 610-611: 570-575, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28822924

RESUMEN

Urban gardens in Central California are highly vulnerable to the effects of climate change, experiencing both extended high heat periods as well as water restrictions because of severe drought conditions. This puts these critical community-based food production systems at risk as California is expected to experience increasing weather extremes. In agricultural systems, increased vegetation complexity, such as greater structure or biodiversity, can increase the resilience of food production systems from climate fluctuations. We test this theory in 15 urban gardens across California's Central Coast. Local- and landscape-scale measures of ground, vegetation, and land cover were collected in and around each garden, while climate loggers recorded temperatures in each garden in 30min increments. Multivariate analyses, using county as a random factor, show that both local- and landscape-scale factors were important. All factors were significant predictors of mean temperature. Tallest vegetation, tree/shrub species richness, grass cover, mulch cover, and landscape level agricultural cover were cooling factors; in contrast, garden size, garden age, rock cover, herbaceous species richness, and landscape level urban cover were warming factors. Results were similar for the maximum temperature analysis except that agriculture land cover and herbaceous species richness were not significant predictors of maximum temperature. Analysis of gardener watering behavior to observed temperatures shows that garden microclimate was significantly related to the number of minutes watered as well as the number of liters of water used per watering event. Thus gardeners seem to respond to garden microclimate in their watering behavior even though this behavior is most probably motivated by a range of other factors such as water regulations and time availability. This research shows that local management of ground cover and vegetation can reduce mean and maximum temperatures in gardens, and the reduced temperatures may influence watering behavior of gardeners.

18.
Environ Entomol ; 46(6): 1313-1321, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29069309

RESUMEN

Apocephalus borealis phorid flies, a parasitoid of bumble bees and yellow jacket wasps in North America, was recently reported as a novel parasitoid of the honey bee Apis mellifera Linnaeus (Hymenoptera: Apidae). Little is known about the ecology of this interaction, including phorid fecundity on bee hosts, whether phorid-bee parasitism is density dependent, and which local habitat and landscape features may correlate with changes in parasitism rates for either bumble or honey bees. We examined the impact of local and landscape drivers and host abundance on phorid parasitism of A. mellifera and the bumble bee Bombus vosnesenskii Radoszkowski (Hymenoptera: Apidae). We worked in 19 urban gardens along the North-Central Coast of California, where phorid parasitism of honey bees was first reported in 2012. We collected and incubated bees for phorid emergence, and surveyed local vegetation, ground cover, and floral characteristics as well as land cover types surrounding gardens. We found that phorid parasitism was higher on bumble bees than on honey bees, and phorids produced nearly twice as many pupae on individual bumble bee hosts than on honey bee hosts. Parasitism of both bumble and honey bees increased with abundance of honey bees in a site. Differences in landscape surroundings did not correlate with parasitism, but local factors related to bee resource provisioning (e.g., tree and shrub abundance) positively correlated with increased parasitism. This research thus helps to document and describe conditions that may have facilitated phorid fly host shift to honey bees and further elucidate how resource provisioning in urban gardens influences bee-parasite interactions.


Asunto(s)
Abejas/parasitología , Dípteros/fisiología , Ecosistema , Interacciones Huésped-Parásitos , Animales , California , Jardines , Densidad de Población
19.
Environ Entomol ; 46(2): 201-209, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334278

RESUMEN

Urbanization negatively affects biodiversity, yet some urban habitat features can support diversity. Parasitoid wasps, an abundant and highly diverse group of arthropods, can inhabit urban areas and do well in areas with higher host abundance, floral resources, or local or landscape complexity. Parasitoids provide biological control services in many agricultural habitats, yet few studies have examined diversity and abundance of parasitoids in urban agroecosystems to understand how to promote conservation and function. We examined the local habitat and landscape drivers of parasitoid abundance, superfamily and family richness, and parasitoid composition in urban gardens in the California central coast. Local factors included garden size, ground cover type, herbaceous plant species, and number of trees and shrubs. Landscape characteristics included land cover and landscape diversity around gardens. We found that garden size, mulch cover, and urban cover within 500 m of gardens predicted increases in parasitoid abundance within gardens. The height of herbaceous vegetation and tree and shrub richness predicted increases in superfamily and family richness whereas increases in urban cover resulted in declines in parasitoid richness. Abundance of individual superfamilies and families responded to a wide array of local and landscape factors, sometimes in opposite ways. Composition of parasitoid communities responded to changes in garden size, herbaceous plant cover, and number of flowers. Thus, both local scale management and landscape planning may impact the abundance, diversity, and community composition of parasitoids in urban gardens, and may result in differences in the effectiveness of parasitoids in biological control.


Asunto(s)
Biodiversidad , Ecosistema , Himenópteros/fisiología , Parásitos/fisiología , Animales , California , Ciudades , Jardines , Himenópteros/clasificación , Parásitos/clasificación , Dinámica Poblacional
20.
Ecol Appl ; 27(3): 966-976, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28083983

RESUMEN

In agroecosystems, local and landscape features, as well as natural enemy abundance and richness, are significant predictors of predation services that may result in biological control of pests. Despite the increasing importance of urban gardening for provisioning of food to urban populations, most urban gardeners suffer from high pest problems, and have little knowledge about how to manage their plots to increase biological control services. We examined the influence of local, garden scale (i.e., herbaceous and arboreal vegetation abundance and diversity, ground cover) and landscape (i.e., landscape diversity and surrounding land use types) characteristics on predation services provided by naturally occurring predators in 19 urban gardens in the California central coast. We introduced sentinel pests (moth eggs and larvae and pea aphids) onto greenhouse-raised plants taken to gardens and assigned to open or bagged (predator exclosure) treatments. We found high predation rates with between 40% and 90% of prey items removed in open treatments. Predation services varied with local and landscape factors, but significant predictors differed by prey species. Predation of eggs and aphids increased with vegetation complexity in gardens, but larvae predation declined with vegetation complexity. Smaller gardens experienced higher predation services, likely due to increases in predator abundance in smaller gardens. Several ground cover features influenced predation services. In contrast to patterns in rural agricultural landscapes, predation on aphids declined with increases in landscape diversity. In sum, we report the relationships between several local management factors, as well as landscape surroundings, and implications for garden management.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Jardinería/métodos , Jardines , Control Biológico de Vectores , Animales , California , Ciudades , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...